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Lattice animal contact models of a collapsing branched 
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Department of Physics, King's College, Strand, London WCZRZLS, UK 

Received 11 November 1991 

Abstract. We consider two lattice animal models for the collapse of dilute branched 
polymers in a good solvent. In both cascs, the collapse io driven by a near-neighbour 
contact fugacity, the two models differing in the way molecular weights are assessed, either 
by the site content or the bond content of the animal. We describe some rigorous results, 
including bounds, for the temperature dependence of their reduced limiting free energies 
a n  a d-dimensional hypercubic lattice and compare these results with numerical estimates 
derived from exaef enumeration data. From the specific heat, we estimate the collapse 
temperature of both models on a variety of lattices. In  addition, we estimate the CIDSS-over 
exponent 4andfindthatforbathmodels ~=0 .60+0 .03(d=2)and ,$=0 .82~0 .02(d=3) .  

1. Introduction 

Recently, there has been considerable interest in modelling the collapse of randomly 
branched polymers in dilute solution, using either lattice animals (Derrida and 
Hernnann 1983, Dickman and Schieve 1984, Lam 1987, 1988, Chang and Shapir 1988, 
Madras et a/ 1988, 1990, Gaunt and Flesia 1990, Gaunt 1991), lattice trees (Madras 
et a/ 1990, Gaunt and Flesia 1991) or lattice animals with a fixed cyclomatic index (c) 
i.e. c-animals (Flesia 1992, Flesia et a/ 1992). As the solvent quality decreases, or, 
alternatively, the temperature decreases, the branched polymers become more compact 
and a tricritical collapse transition is expected to occur. The existence of a collapse 
transition for branched polymers has been proven (Dhar 1987) only for a ZD directed 
animal model. 

Most work has focused on two basic types of model. In one of these, the collapse 
is driven by something equivalent to a cycle fugacity (Derrida and Herrmann 1983, 
Dickman and Schieve 1984, Lam 1987, 1988, Chang and Shapir 1988, Madras er a/ 
1988, 1990, Gaunt and Flesia 1990). In the other sort of model, the driving force is a 
near-neighbour contact fugacity (Madras et a/ 1990, Gaunt and Flesia 1990, 1991, 
Flesia 1992, Flesia et a/ 1992). (Two vertices form a contact if they are non-bonded 
near neighbours.) Contact models have also been used to study the internal transition 
that occurs in linear polymers (see e.g. the references cited by Derrida and Hernnann 
1983 and Madras er al 1990). 

Very recently, a solvent perimeter model has been introduced (Flesia 1992, Flesia 
er a/ 1992) in which the collapse is driven explicitly by solvent quality, i.e. by a repulsive 
interaction between each vertex of the animal and nearest-neighbour unoccupied sites 
of the lattice. For the case of c-animals, they showed that there is an exact mapping 
between the thermodynamics of this model and the thermodynamics of the contact 
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model, and that the limiting free energy is independent of c in both models. For the 
contact model, this implies that, if a collapse transition exists at p = P o  (where eo is 
the contact fugacity) for trees ( c  = 0). then a collapse transition occurs at po for all 
values of c. The critical point of the solvent perimeter model is then -p0/2, independent 
of c and, moreover, critical exponents such as LY are the same for both models, 
independent of c. 

The contact model for lattice trees has been studied by Gaunt and Flesia (1991). 
Here we present corresponding results for lattice animals. Clearly, the animals must 
be weakly embedded in the underlying lattice (i.e. they must be subgraphs) since for 
strongly embedded clusters (i.e. section graphs) the number of contacts (k) is zero by 
definition. For lattice animals, their size may be classified either by their site content 
or by their bond content. We have referred to these cases as the A- and A’-models, 
respectively (Gaunt and Flesia 1990). For lattice trees, this distinction was unnecessary 

Let us write a,(k) and ab(k) for the number of weakly embedded animals with n 
sites and k contacts, and n bonds and k contacts, respectively. The partition function 
of the A-model is then 
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.:-mtLn-..mharr -Foitn. --A ..Ch-..,+- :- n t r m -  m--+A. , : - l l . . - - l - . -A h..E..ln-*---l...:-- 
ULC LLULLLYCLI Y L  a w r a  PUU VL YVUYD 111 P L Z W =  PZL u i y L a u y  L C ~ P L G U  YJ  LYLTI 3 n C - L a i w u .  

We note that p > 0 corresponds to attractive interactions and p <O to repulsive 
interactions. We define the corresponding reduced free energy by 

F.(p; A )  = n-’ log Z,(p; A )  ( 1.2) 

and the reduced limiting free energy by 

F ( p ;  A)= lim F.(p; A). 
n-uj 

(1.3) 

Analogous expressions for the A’-model are obtained by replacing a by a‘ in (1.1). 
In section 2, we summarize what is known rigorously (Madras et al 1990) about 

F ( P ;  A )  and F ( p ;  A’) for a d-dimensional simple hypercubic lattice. In section 3, the 
rigorous results are compared with numerical estimates for the square and simple cubic 
lattices. We study the specific heat numerically in section 4 and estimate the transition 
point pc and the cross-over exponent + for the A -  and A‘-models in two and three 
dimensions. Finally, in section 5 ,  we discuss our results for the cross-over exponent 
and compare them with corresponding results for lattice trees (Gaunt and Flesia 1991) 
and for a cycle model (Derrida and Hemnann 1983, Lam 1988, Chang and Shapir 
1988) that has been widely used for studying the collapse transition in branched 
polymers. 

2. Free energy: rigorous results 

For a d-dimensional simple hypercubic lattice, Madras et al (1990) have proved a 
number of rigorous results for the reduced limiting free energy, which we summarize 
for use later. 

Firstly, the limit defined in (1.3) for the A-model, and the corresponding limit for 
the A’-model, exist for -mSp <m. Furthermore, F ( p ;  A )  and F ( p ;  A’) are monotone, 
non-decreasing, convex and continuous for -m<p  <CO. If A, and Ab are the growth 
constants for strongly embedded animals with site and bond counting, respectively, 



then 

F(-m; A )  =log A, F(0;  A )  =log A, 

and 

F(-m; A’) =log Ab F(0;  A’) =log A b .  

Lattice animal contact models 2129 

and A 3  and Ab are the corresponding growth constants for weakly embedded animals, 

(2.1) 

(2.2) 

In addition, it can be proved that 

lim F(p;  A )  = log As 
!3-.-m 

and 

lim F ( p ;  A’)=logAb. 
o--m 

Some intermediate results used to establish the iviour in 
give rise to upper bounds which are useful for p <0, namely 

: p+ -m 

F(p;  A)Smin{log A # ,  log A,+d log(1 +eS)} 

F(p;A’)Smin{logAb,logAb+d log(l+AbeP)} p<o. 

max{F(O), (d- l)p]< F ( P ) G  F ( O ) f ( d - l ) P  

P<O 
and 

For both models, F is bounded for p > 0 by 

p>o. 
Dividing (2.7) by p and letting p + m gives 

lim F ( p ) / p  = d - 1. 
0-m 

Moreover, there is an asymptotic line 

L ( p )  = ( d - l ) p  + S 

such that 

l im{F(p)  -L(p)} = 0. 
@-a 

(2.4) 

nit also 

(2.5) 

Physically, S is interpreted as the reduced limiting entropy of the compact phase. For 
both models, S is strictly positive and is bounded below by 

d 
S ~ T - ~  1: ... /:Iog(2d-2 i=, (2.10) 

For the square lattice, this gives 4C/r = 1.166.. . , where C is Catalan’s constant, and 
for the simple cubic lattice, 1.673.. . (Gaunt and Flesia 1991). Combining the above 
information gives improved bounds on F ( P )  for p > 0 of 

max{F(O), p+ 1.166.. . I s  F ( B ) S  F(O)+P d = 2  (2.11) 

max{F(O), 2 p +  1.673.. . } S  F ( P ) S  F ( 0 ) + 2 p  d = 3 .  (2.12) 

and 
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We note, for use in section 3, the numerical estimates (Guttmann and Gaunt 1978, 
Gaunt and Ruskin 1978, Gaunt and Flesia 1990, Gaunt 1991 and unpublished) 

logAS= 1.704k0.002 logAS= 1.4019k0.0005 
logAb=1.651~0.002 (2.13) log Ab = 1.355 kO.002 

for the square lattice, and 
log As = 2.434*0.009 logA,=2.121k0.003 
log Ab=2.364k0.005 log Ab = 2.0677 kO.0005 

for the simple cubic lattice. 

(2.14) 

3. Free energy: numerical results 

In this section, we report numerical estimates of F ( P ;  A )  and F ( p ;  A’) for the square 
and simple cubic lattices, and compare these estimates with the rigorous results 
described in section 2. 

Our numerical estimates are based on new exact enumeration data (Madras er nl 
1990) with the number of sites n S 19 on the square lattice and n s 17 on the simple 
cubic lattice. We begin by using these data to calculate exactly the reduced free energies 
F.(p; A )  and F.(p; A’) (see e.g. (1.2)), for values of p in the interval - 4 s p s 6 .  We 
do not give the plots since they are very similar to those for the t-model (lattice trees); 
see e.g. figure 1 of Gaunt and Flesia (1991). The curves lie mostly outside the region 
delineated by the rigorous bounds given in section 2. The reduced limiting free energies 
F ( p ;  A )  and F ( p ;  A’), defined by (1 .3)  for example, are then estimated numerically 
using ratio and Pad& approximant methods (Gaunt and Guttmann 1974, Gaunt and 
Flesia 1990, Madras ef a/ 1990). Our best estimates of F ( p ;  A )  and F ( p ;  A’) for the 
square and simple cubic lattices for -4.0 5 p < 1.5 and -4.0 s p < 1 .O, respectively, are 
given in table 1.  F ( p ;  A‘) is plotted in figures 1 and 2 for the square and simple cubic 
lattices, respectively, together with the rigorous bounds given in section 2. Correspond- 
ing plots for F ( p ;  A )  have been given in figure 3 of Madras el al (1990) for the square 
lattice, and in figure 1 of Gaunt (1991) for the simple cubic lattice. 

For all p s 0, as well as for small positive values of p ,  the numerical estimates are 
very precise. For larger values of p ,  the uncertainties increase rapidly in size. For all 
values of p, our estimates satisfy the rigorous bounds. For large p > O ,  our results 
suggest that for the A- and A’-models on the square and simple cubic lattices, the lower 
bound is (or is very nearly) the exact asymptote. This implies that the reduced limiting 
entropy (S) of the compact phase, defined in (2.9), is given by the expression on the 
right-hand side of (2.10). We recall that we made the same conjecture for the 1-model 
(lattice trees) on the square and simple cubic lattices. 

Finally, as expected, F ( p ;  A )  and F ( p ;  A’) are rather smooth and we have been 
unable to detect any sign of the collapse transition which is expected to occur for some 
value of p = p c >  0. 

4. Specific heat 

Rather than attempt numerical differentiation of F ( p ;  A )  and F(P; A’) in order to 
estimate the specific heat, we follow the approach taken by other workers and differenti- 
ate F.(p;  A )  and F.(p; A’) before taking the n+m limit. Accordingly, we define the 
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Table 1. Estimates of the reduced limiting free energies of the A -  and A'-models an the 
square and simple cubic lattices. 

-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 

1.40310.001 1.360+0.002 
1.4061 0.002 1.363*0.002 
1.417io.002 1.3685 0.002 
1.421 * 0.002 1.378 * 0.002 
1.442*0.002 1.393+0.002 
1.462 1 0.002 1.413 5 0.001 
1.508+0.002 1.455*0.001 
1.581 *0.002 1.52710.001 
1.704+0.002 1.65010.001 
1.737+0.002 1.683850.0004 
1.77410.002 1.7217 + 0.0002 
1.81510.004 1.7635 + 0.0015 
1.86010.006 1.8095 + 0.0015 
1.918 1 0.006 1.8600+0.0020 
1.967+0.008 1.9135 +0.0020 
2.024+0.008 1.971 zt 0.007 
2.081 0.01 ...",_I- "."I 

2.1410.01 2.13 50.04 
2.2050.0l 2.21 +0.05 
2.28+0.02 2.3010.05 
2.35 10.03 2.39i0.06 
2.4210.05 2.4710.07 
2.50+0.07 2.57+0.09 
2.55+0.10 2.66zt0.10 

, n<< L n n, 

2.1260 i 0.0005 
2.1289 1 0.0005 
2.1339 +0.0005 
2.1423+0.0@35 
2.1565 +0.0005 
2.1809+0.0005 
2.22210.002 
2.293 5 0.002 
2.43450.004 
2.481 +0.008 
2.534+0.008 
2.603+0.008 
2.69550.014 
2.83+0.06 
2.9410.10 
3.10+0.15 

3.40+ 0.20 
3.55zt0.20 

, 1 C L , , l C  
>.I-, A".,, 

2.0720* 0.0005 
2.0749 1 0.0005 
2.0798+-0.0005 
2.0sso * o.aoo5 
2.1017+0.0005 
2.1248 -t 0.0005 
2.164+ 0.001 
2.235S0.002 
2.360 zt 0.003 
2.40250.003 
2.451 *O.W 
2.514+0.004 
2.59910.005 
2.6910.01 
2.82+0.03 
2.99+0.05 
:.::+0.:: 
3.3zt0.20 
3.5*0.25 

P 
Flgurr 1. Numerical estimates of the reduced limiting free energy F(8) for the A'-model 
on the square lattice. Estimated errors are given unless smaller than the symbols. Upper 
and lower bounds are also included. 
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P 
Figure 2. As figure 1 but on the simple cubic lattice 

specific heat through 

C.@; A ) =  (d2/dP2)F.(p; A )  = ( ( k 2 ) - ( k ) ’ ) / n  (4.1) 

and a similar expression for C.(p; A’). For a given lattice, C.@; A )  and C.(p; A‘) 
have essentially the same shape as C.(p; t) for the t-model, viz. they all exhibit sharp 
peaks which increase smoothly in height as n increases, and have secondary features 
which are characteristic of the lattice. As an example, we plot in figure 3 C.(p; A )  for 
the simple cubic lattice. For certain values of n, the peak is higher and displaced to a ’  
larger value of p relative to the peaks for (n - 1) and (n + 1). For n = 15 (A-model; 
and n = 14 (A’-model) on the body-centred cubic lattice, there is a secondary peak, at 

Figure 3. The specific heat CO@) for the A-model on the simple cubic lattice for n = 4-11. 
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a larger value of p than the principal peak. A very similar peak was observed in 
the t-model for n = 1 5  (see Gaunt and Flesia 1991, figure 7). For the square 
lattice, the curves have a rather small, but quite definite, 'shoulder' at large values 
of p (for the f-model, see Gaunt and Flesia 1991, figure 4). It has been suggested that 
all these low-temperature features are manifestations of roughening (Dickman and 
Schieve 1984, Lam 1987, Gaunt and Flesia 1990,1991). 

According to finite-size scaling theory, the height h. of the principal maximum 
scales as 

h. - np8 n + o o  (4.2) 

where 6 is the cross-over exponent and a is the specific heat exponent. Assuming a 
and 4 are related by the 'hyperscaling' relation 

2 - a = 1 / 4  (4.3) 

(see e.g. Derrida and Herrmann 1983), gives 

h, I nle-' n+m.  

To estimate 4, we calculate 

(4.4) 

which should approach 6 as n +CO. In figure 4, we plot 4" and their adjacent linear 
extrapolants against l / n  for the A -  and A'-models on the square lattice. We estimate 
that for both models 

$ =0.60*0.03 d = 2 .  (4.6) 

I/" 

Figure 4. 4" (upper C U N ~ S )  and their extrapolants (lower C U N ~ S )  plotted against I /n  for 
the A- and A'-models (e and 0, respectively) on the square lattice. Our best estimate of 
,$ is indicated on the right-hand axis. 
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Corresponding plots for the body-centred cubic lattice, together with less well converged 
results for the simple cubic and diamond lattices, are given in figures 5 and 6 for the 
A- and A'-models, respectively. In addition, the equivalent of figure 4 but for the 
body-centred cubic lattice has been plotted in figure 2 of Gaunt (1991). We conclude 
that for both models on all 3~ lattices,~ 

S Flesia and D S Gaunt 

c$ =0.82*0.02 d = 3 .  (4.7) 

According to finite size scaling theory, the values of p at which the specific heat curves 
have their principal maximum, namely pmaX(n), should approach p, like 

P,.,(n) = p ,+An- ' -Bn- '+ .  . . n + m  (4.8) 

where A and B are constant amplitudes. In figure 7, p,,.(n) is plotted against 
for the A- and A'-models on several lattices using the central value of c$ in (4.6) and 
(4.7). The curves for the A- and A'-models on a given lattice are quite similar to one 
another and to the corresponding curve for the r-model on the same lattice (see Gaunt 
and Flesia 1991, figure 8). In all cases, the curves become relatively smooth for large 
values of n and, in the case of the square lattice, pass through a minimum. We have 
tried to estimate p. by solving (4.8) and have obtained the results presented in table 
2. Estimates for the r-model (Gaunt and Flesia 1991) are given for comparison. For 

1.2 

1.1- 

1.0- 
h 

0.9 

I 1 I -l - 

A 
FigureS. $. and their extrapolants plotted against l / n  for the A-model on the body-centred 
cubic lattice (t), together with 6, for the simple cubic (0) and diamond (0) lattices. Our 
best estimate of 6 is indicated on the right-hand axis. 
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I 
I I I  I 

0.15 0.10 0.05 0 
I ln  

Figure 6. As figure 5 but far the A'-model. 

the diamond lattice, estimates are not possible since the estimators are too erratic to 

For all three contact models, the central estimates suggest that a ZD system collapses 
at a lower temperature than a 3~ system. The same is true for a cycle model of strongly 
embeddable lattice animals with site counting (Derrida and Hemnann 1983, Lam 1987, 
1988). The coordination number of the embedding lattice is also important. For 
example, in three dimensions, we expect that a branched polymer on the body-centred 
cubic lattice will collapse sooner than one on the simple cubic lattice, because near 
neighbours are more abundant in the former case. The results in table 2 support this 
conclusion for all three models. Finally, we note that for a given lattice in either two 
or three dimensions, it appears that the A-model collapses before the A'-model, which 
in turn collapses before the 1-model. 

e ~ ~ ~ . p o ~ a ~ ~ a n ,  

5. Summary and discussion 

In this paper, we have investigated numerically the collapse transition that occurs in 
two lattice animal models of branched polymers, namely the A- and A'-models, in 
which the collapse is driven by a near-neighbour contact fugacity. 

In section 2, we summarized some rigorous results (Madras et a1 1990), including 
upper and lower bounds for the temperature dependence of the reduced limiting free 
energies on a d-dimensional hypercubic lattice. In section 3, we obtained numerical 
estimates of F ( p ;  A )  and F(p; A') for the square and simple cubic lattices (see table 
I ) ,  which satisfy the rigorous bounds for all values of p and which suggest that the 
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2.5 - 

2.0 - 

- 
E 1.5- 2 
2 

1.0 - 

0.5 - 

0 0.1 0.2 0.3 
lh' 

Figure 7. P,..(n) plotted against l/n"' on the square lattice and against on the 
diamond, simple cubic and body-centred cubic lattices for the A -  and A'-models (0 and 
0, respectively). 

Table 2. Estimates of the collapse transition paint 0, for contact models on the square 
(sq), simple cubic (sc) and body-centred cubic (bcc) lattices. 

A A' f 

sq 0.38i0.05 0.45 5 0.1 0.5iO.l 
SC 0.3 i0.3 0.35 i 0.3 0.35 i0.3 
bcc 0.23i0.01 0.32i0.02 0.33 k0 . l  

lower bound for large p > 0 is the exact asymptote as p -+ m. This implies that the 
reduced limiting entropy S of the compact phase is given by the right-hand side of 
(2.10). The same result appears to be valid (Gaunt and Flesia 1991) for the lattice tree 
version of these models (i.e. the t-model). In section 4, we have used the specific heat 
and finite size scaling to estimate the collapse transition point /3= and our results are 
summarized in table 2. In addition, we have estimated the cross-over exponent as 
+ = 0.60*0.03 in two dimensions and + = 0.82+0.02 in three dimensions. The central 
values coincide with our best estimates for the t-model (Gaunt and Flesia 1991) and 
for a contact model of c-animals (Flesia et al 1992). It seems that all contact models, 
whether of lattice animals (&A'), lattice trees ( I )  or c-animals, are in the same 
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universality class. This supports the suggestion, first made by Lubensky and Isaacson 
(1979), that cycles are relatively unimportant in determining the universality class of 
branched polymers. 

These values of 4 may be compared with corresponding estimates for a cycle ( C - )  
model of lattice animals, strongly embeddable in the lattice with site counting. For 
this model, 4 =0.657*0.025 in two dimensions (Demda and Herrmann 1983), while 
in three dimensions, there are conflicting estimates of 4 -0.814 (Lam 1988) and 6 1 
(Chang and Shapir 1988). These results indicate that contact models and cycle models 
may be in different universality classes, but the evidence is not conclusive. 
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